Search Results for ""
2311 - 2320 of 3757 for Incomplete Gamma FunctionSearch Results
A figurate number of the form P_n^((4))=1/6n(n+1)(2n+1), (1) corresponding to a configuration of points which form a square pyramid, is called a square pyramidal number (or ...
The stability index Z^_(G) of a graph G is defined by Z^_=sum_(k=0)^(|_n/2_|)|c_(2k)|, where c_k is the kth coefficient of the characteristic polynomial and |_n_| denotes the ...
The Wigner 3j-symbols (j_1 j_2 j_3; m_1 m_2 m_3), also known as "3j symbols" (Messiah 1962, p. 1056) or Wigner coefficients (Shore and Menzel 1968, p. 275) are quantities ...
The Wigner 6j-symbols (Messiah 1962, p. 1062), commonly simply called the 6j-symbols, are a generalization of Clebsch-Gordan coefficients and Wigner 3j-symbol that arise in ...
Zarankiewicz's conjecture asserts that graph crossing number for a complete bipartite graph K_(m,n) is Z(m,n)=|_n/2_||_(n-1)/2_||_m/2_||_(m-1)/2_|, (1) where |_x_| is the ...
The Legendre polynomials, sometimes called Legendre functions of the first kind, Legendre coefficients, or zonal harmonics (Whittaker and Watson 1990, p. 302), are solutions ...
Let p(d) be the probability that a random walk on a d-D lattice returns to the origin. In 1921, Pólya proved that p(1)=p(2)=1, (1) but p(d)<1 (2) for d>2. Watson (1939), ...
Integrals over the unit square arising in geometric probability are int_0^1int_0^1sqrt(x^2+y^2)dxdy=1/3[sqrt(2)+sinh^(-1)(1)] int_0^1int_0^1sqrt((x-1/2)^2+(y-1/2)^2)dxdy ...
A permutation cycle is a subset of a permutation whose elements trade places with one another. Permutations cycles are called "orbits" by Comtet (1974, p. 256). For example, ...
Roughly speaking, the metric tensor g_(ij) is a function which tells how to compute the distance between any two points in a given space. Its components can be viewed as ...
...


