Search Results for ""
391 - 400 of 3564 for Incomplete Beta FunctionSearch Results
![](/common/images/search/spacer.gif)
Given F_1(x,y,z,u,v,w) = 0 (1) F_2(x,y,z,u,v,w) = 0 (2) F_3(x,y,z,u,v,w) = 0, (3) if the determinantof the Jacobian |JF(u,v,w)|=|(partial(F_1,F_2,F_3))/(partial(u,v,w))|!=0, ...
The summatory function Phi(n) of the totient function phi(n) is defined by Phi(n) = sum_(k=1)^(n)phi(k) (1) = sum_(m=1)^(n)msum_(d|m)(mu(d))/d (2) = ...
A skewed distribution which is similar to the binomial distribution when p!=q (Abramowitz and Stegun 1972, p. 930). y=k(t+A)^(A^2-1)e^(-At), (1) for t in [0,infty) where A = ...
A function f(x) is absolutely monotonic in the interval a<x<b if it has nonnegative derivatives of all orders in the region, i.e., f^((k))(x)>=0 (1) for a<x<b and k=0, 1, 2, ...
The Epstein zeta function for a n×n matrix S of a positive definite real quadratic form and rho a complex variable with R[rho]>n/2 (where R[z] denotes the real part) is ...
The confluent hypergeometric function of the second kind gives the second linearly independent solution to the confluent hypergeometric differential equation. It is also ...
Given the sum-of-factorials function Sigma(n)=sum_(k=1)^nk!, SW(p) is the smallest integer for p prime such that Sigma[SW(p)] is divisible by p. If pSigma(n) for all n<p, ...
Let S_N(s)=sum_(n=1)^infty[(n^(1/N))]^(-s), (1) where [x] denotes nearest integer function, i.e., the integer closest to x. For s>3, S_2(s) = 2zeta(s-1) (2) S_3(s) = ...
The Mittag-Leffler function (Mittag-Leffler 1903, 1905) is an entire function defined by the series E_alpha(z)=sum_(k=0)^infty(z^k)/(Gamma(alphak+1)) (1) for alpha>0. It is ...
Let R(x) be the ramp function, then the Fourier transform of R(x) is given by F_x[R(x)](k) = int_(-infty)^inftye^(-2piikx)R(x)dx (1) = i/(4pi)delta^'(k)-1/(4pi^2k^2), (2) ...
![](/common/images/search/spacer.gif)
...