TOPICS
Search

Search Results for ""


431 - 440 of 3325 for Hypergeometric FunctionSearch Results
By way of analogy with the prime counting function pi(x), the notation pi_(a,b)(x) denotes the number of primes of the form ak+b less than or equal to x (Shanks 1993, pp. ...
The parabolic cylinder functions are a class of functions sometimes called Weber functions. There are a number of slightly different definitions in use by various authors. ...
Kummer's first formula is (1) where _2F_1(a,b;c;z) is the hypergeometric function with m!=-1/2, -1, -3/2, ..., and Gamma(z) is the gamma function. The identity can be written ...
A generalized hypergeometric function _pF_q[alpha_1,alpha_2,...,alpha_p; beta_1,beta_2,...,beta_q;z], is said to be k-balanced if sum_(i=1)^qbeta_i=k+sum_(i=1)^palpha_i.
where _5F_4(a,b,c,d,e;f,g,h,i;z) is a generalized hypergeometric function and Gamma(z) is the gamma function. Bailey (1935, pp. 25-26) called the Dougall-Ramanujan identity ...
where _3F_2(a,b,c;d,e;z) is a generalized hypergeometric function and Gamma(z) is the gamma function (Bailey 1935, p. 16; Koepf 1998, p. 32).
Slater (1960, p. 31) terms the identity _4F_3[a,1+1/2a,b,-n; 1/2a,1+a-b;1+a+n]=((1+a)_n(1/2+1/2a-b)_n)/((1/2+1/2a)_n(1+a-b)_n) for n a nonnegative integer the "_4F_3[1] ...
A generalized hypergeometric function _pF_q[alpha_1,alpha_2,...,alpha_p; beta_1,beta_2,...,beta_q;z] is said to be well-poised if p=q+1 and ...
The identity _2F_1(x,-x;x+n+1;-1)=(Gamma(x+n+1)Gamma(1/2n+1))/(Gamma(x+1/2n+1)Gamma(n+1)), or equivalently ...
Let generalized hypergeometric function _pF_q[alpha_1,alpha_2,...,alpha_p; beta_1,beta_2,...,beta_q;z] (1) have p=q+1. Then the generalized hypergeometric function is said to ...
1 ... 41|42|43|44|45|46|47 ... 333 Previous Next

...