TOPICS
Search

Search Results for ""


21 - 30 of 385 for Hyperbolic LogarithmSearch Results
A non-Euclidean geometry, also called Lobachevsky-Bolyai-Gauss geometry, having constant sectional curvature -1. This geometry satisfies all of Euclid's postulates except the ...
A hyperbolic version of the Euclidean tetrahedron.
The hyperbolic cosine is defined as coshz=1/2(e^z+e^(-z)). (1) The notation chx is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). This function describes the ...
The hyperbolic cosecant is defined as cschz=1/(sinhz)=2/(e^z-e^(-z)). (1) It is implemented in the Wolfram Language as Csch[z]. It is related to the hyperbolic cotangent ...
The hyperbolic secant is defined as sechz = 1/(coshz) (1) = 2/(e^z+e^(-z)), (2) where coshz is the hyperbolic cosine. It is implemented in the Wolfram Language as Sech[z]. On ...
By way of analogy with the usual tangent tanz=(sinz)/(cosz), (1) the hyperbolic tangent is defined as tanhz = (sinhz)/(coshz) (2) = (e^z-e^(-z))/(e^z+e^(-z)) (3) = ...
The hyperbolic octahedron is a hyperbolic version of the Euclidean octahedron, which is a special case of the astroidal ellipsoid with a=b=c=1. It is given by the parametric ...
The hyperbolic sine is defined as sinhz=1/2(e^z-e^(-z)). (1) The notation shz is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). It is implemented in the Wolfram ...
In the hyperbolic plane H^2, a pair of lines can be parallel (diverging from one another in one direction and intersecting at an ideal point at infinity in the other), can ...
The hyperbolic volume of the knot complement of a hyperbolic knot is a knot invariant. Adams (1994) lists the hyperbolic volumes for knots and links. The hyperbolic volume of ...
1|2|3|4|5|6 ... 39 Previous Next

...