TOPICS
Search

Search Results for ""


101 - 110 of 864 for Heron FormulaSearch Results
The integral representation of ln[Gamma(z)] by lnGamma(z) = int_1^zpsi_0(z^')dz^' (1) = int_0^infty[(z-1)-(1-e^(-(z-1)t))/(1-e^(-t))](e^(-t))/tdt, (2) where lnGamma(z) is the ...
(e^(ypsi_0(x))Gamma(x))/(Gamma(x+y))=product_(n=0)^infty(1+y/(n+x))e^(-y/(n+x)), where psi_0(x) is the digamma function and Gamma(x) is the gamma function.
sum_(k=0)^(infty)[((m)_k)/(k!)]^3 = 1+(m/1)^3+[(m(m+1))/(1·2)]^3+... (1) = (Gamma(1-3/2m))/([Gamma(1-1/2m)]^3)cos(1/2mpi), (2) where (m)_k is a Pochhammer symbol and Gamma(z) ...
A^*(x)=sum_(lambda_n<=x)^'a_n=1/(2pii)int_(c-iinfty)^(c+iinfty)f(s)(e^(sx))/sds, where f(s)=suma_ne^(-lambda_ns).
The solution u(x,y)=int_0^xdxiint_1^yR(xi,eta;x,y)f(xi,eta)deta, where R(x,y;xieta) is the Riemann function of the linear Goursat problem with characteristics phi=psi=0 ...
For R[z]>0, where J_nu(z) is a Bessel function of the first kind.
Let a general theta function be defined as T(x,q)=sum_(n=-infty)^inftyx^nq^(n^2), then
Let R+B be the number of monochromatic forced triangles (where R and B are the number of red and blue triangles) in an extremal graph. Then R+B=(n; 3)-|_1/2n|_1/4(n-1)^2_|_|, ...
where R[nu]>-1, |argp|<pi/4, and a, b>0, J_nu(z) is a Bessel function of the first kind, and I_nu(z) is a modified Bessel function of the first kind.
For r and x real, with 0<=arg(sqrt(k^2-tau^2))<pi and 0<=argk<pi, 1/2iint_(-infty)^inftyH_0^((1))(rsqrt(k^2-tau^2))e^(itaux)dtau=(e^(iksqrt(r^2+x^2)))/(sqrt(r^2+x^2)), where ...
1 ... 8|9|10|11|12|13|14 ... 87 Previous Next

...