TOPICS
Search

Search Results for ""


41 - 50 of 3733 for Gamma FunctionSearch Results
The Lorentzian function is the singly peaked function given by L(x)=1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2), (1) where x_0 is the center and Gamma is a parameter specifying ...
The entire function phi(rho,beta;z)=sum_(k=0)^infty(z^k)/(k!Gamma(rhok+beta)), where rho>-1 and beta in C, named after the British mathematician E. M. Wright.
The confluent hypergeometric function of the second kind gives the second linearly independent solution to the confluent hypergeometric differential equation. It is also ...
The Barnes G-function is an analytic continuation of the G-function defined in the construction of the Glaisher-Kinkelin constant G(n)=([Gamma(n)]^(n-1))/(H(n-1)) (1) for ...
(e^(ypsi_0(x))Gamma(x))/(Gamma(x+y))=product_(n=0)^infty(1+y/(n+x))e^(-y/(n+x)), where psi_0(x) is the digamma function and Gamma(x) is the gamma function.
The E_n(x) function is defined by the integral E_n(x)=int_1^infty(e^(-xt)dt)/(t^n) (1) and is given by the Wolfram Language function ExpIntegralE[n, x]. Defining t=eta^(-1) ...
sum_(k=-n)^n(-1)^k(n+b; n+k)(n+c; c+k)(b+c; b+k)=(Gamma(b+c+n+1))/(n!Gamma(b+1)Gamma(c+1)), where (n; k) is a binomial coefficient and Gamma(x) is a gamma function.
The Cunningham function, sometimes also called the Pearson-Cunningham function, can be expressed using Whittaker functions (Whittaker and Watson 1990, p. 353). ...
The Fox H-function is a very general function defined by where 0<=m<=q, 0<=n<=p, alpha_j,beta_j>0, and a_j,b_j are complex numbers such that no pole of Gamma(b_j-beta_js) for ...
A triangle center function (sometimes simply called a center function) is a nonzero function f(a,b,c) that is homogeneous f(ta,tb,tc)=t^nf(a,b,c) (1) bisymmetry in b and c, ...
1|2|3|4|5|6|7|8 ... 374 Previous Next

...