Search Results for ""
741 - 750 of 13135 for Fractional CalculusSearch Results
The quintuple product identity, also called the Watson quintuple product identity, states (1) It can also be written (2) or (3) The quintuple product identity can be written ...
The ramp function is defined by R(x) = xH(x) (1) = int_(-infty)^xH(x^')dx^' (2) = int_(-infty)^inftyH(x^')H(x-x^')dx^' (3) = H(x)*H(x), (4) where H(x) is the Heaviside step ...
The Rayleigh functions sigma_n(nu) for n=1, 2, ..., are defined as sigma_n(nu)=sum_(k=1)^inftyj_(nu,k)^(-2n), where +/-j_(nu,k) are the zeros of the Bessel function of the ...
A real-valued univariate function f=f(x) is said to have a removable discontinuity at a point x_0 in its domain provided that both f(x_0) and lim_(x->x_0)f(x)=L<infty (1) ...
Let A be an involutive algebra over the field C of complex numbers with involution xi|->xi^♭. Then A is a right Hilbert algebra if A has an inner product <·,·> satisfying: 1. ...
Serret's integral is given by int_0^1(ln(x+1))/(x^2+1)dx = 1/8piln2 (1) = 0.272198... (2) (OEIS A102886; Serret 1844; Gradshteyn and Ryzhik 2000, eqn. 4.291.8; Boros and Moll ...
The hyperbolic sine integral, often called the "Shi function" for short, is defined by Shi(z)=int_0^z(sinht)/tdt. (1) The function is implemented in the Wolfram Language as ...
Find the shape of a soap film (i.e., minimal surface) which will fill two inverted conical funnels facing each other is known as Sinclair's soap film problem (Bliss 1925, p. ...
A singular integral is an integral whose integrand reaches an infinite value at one or more points in the domain of integration. Even so, such integrals can converge, in ...
A sequence s_n^((lambda))(x)=[h(t)]^lambdas_n(x), where s_n(x) is a Sheffer sequence, h(t) is invertible, and lambda ranges over the real numbers. If s_n(x) is an associated ...
...