Search Results for ""
1221 - 1230 of 13135 for Fractional CalculusSearch Results
![](/common/images/search/spacer.gif)
For an arbitrary not identically constant polynomial, the zeros of its derivatives lie in the smallest convex polygon containing the zeros of the original polynomial.
If Omega subset= C is a domain and phi:Omega->C is a one-to-one analytic function, then phi(Omega) is a domain, and area(phi(Omega))=int_Omega|phi^'(z)|^2dxdy (Krantz 1999, ...
Let f(x) be a finite and measurable function in (-infty,infty), and let epsilon be freely chosen. Then there is a function g(x) such that 1. g(x) is continuous in ...
Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional ...
For a two-dimensional map with sigma_2>sigma_1, d_(Lya)=1-(sigma_1)/(sigma_2), where sigma_n are the Lyapunov characteristic exponents.
The second-order ordinary differential equation y^('')-[(m(m+1)+1/4-(m+1/2)cosx)/(sin^2x)+(lambda+1/2)]y=0.
The ordinary differential equation y^('')+r/zy^'=(Az^m+s/(z^2))y. (1) It has solution y=c_1I_(-nu)((2sqrt(A)z^(m/2+1))/(m+2))z^((1-r)/2) ...
The integral representation of ln[Gamma(z)] by lnGamma(z) = int_1^zpsi_0(z^')dz^' (1) = int_0^infty[(z-1)-(1-e^(-(z-1)t))/(1-e^(-t))](e^(-t))/tdt, (2) where lnGamma(z) is the ...
Mann's iteration is the dynamical system defined for a continuous function f:[0,1]->[0,1], x_n=1/nsum_(k=0)^(n-1)f(x_k) with x_0 in [0,1]. It can also be written ...
An n-cycle is a finite sequence of points Y_0, ..., Y_(n-1) such that, under a map G, Y_1 = G(Y_0) (1) Y_2 = G(Y_1) (2) Y_(n-1) = G(Y_(n-2)) (3) Y_0 = G(Y_(n-1)). (4) In ...
![](/common/images/search/spacer.gif)
...