TOPICS
Search

Search Results for ""


1051 - 1060 of 13135 for Fractional CalculusSearch Results
The second-order ordinary differential equation (1+x^2)^2y^('')+lambday=0 (Hille 1969, p. 357; Zwillinger 1997, p. 122).
A necessary and sufficient condition that there should exist at least one nondecreasing function alpha(t) such that mu_n=int_(-infty)^inftyt^ndalpha(t) for n=0, 1, 2, ..., ...
Consider a one-dimensional Hamiltonian map of the form H(p,q)=1/2p^2+V(q), (1) which satisfies Hamilton's equations q^. = (partialH)/(partialp) (2) p^. = ...
The contour C_epsilon illustrated above.
J_m(x)=(x^m)/(2^(m-1)sqrt(pi)Gamma(m+1/2))int_0^1cos(xt)(1-t^2)^(m-1/2)dt, where J_m(x) is a Bessel function of the first kind and Gamma(z) is the gamma function. Hankel's ...
The symbol defined by (v,n) = (2^(-2n){(4v^2-1)(4v^2-3^2)...[4v^2-(2n-1)^2]})/(n!) (1) = ((-1)^ncos(piv)Gamma(1/2+n-v)Gamma(1/2+n+v))/(pin!), (2) where Gamma(z) is the gamma ...
J_n(z) = 1/(2pi)int_(-pi)^pie^(izcost)e^(in(t-pi/2))dt (1) = (i^(-n))/piint_0^pie^(izcost)cos(nt)dt (2) = 1/piint_0^picos(zsint-nt)dt (3) for n=0, 1, 2, ..., where J_n(z) is ...
Let alpha_(n+1) = (2alpha_nbeta_n)/(alpha_n+beta_n) (1) beta_(n+1) = sqrt(alpha_nbeta_n), (2) then H(alpha_0,beta_0)=lim_(n->infty)a_n=1/(M(alpha_0^(-1),beta_0^(-1))), (3) ...
Harmonic coordinates satisfy the condition Gamma^lambda=g^(munu)Gamma_(munu)^lambda=0, (1) or equivalently, partial/(partialx^kappa)(sqrt(g)g^(lambdakappa))=0. (2) It is ...
Let D=D(z_0,R) be an open disk, and let u be a harmonic function on D such that u(z)>=0 for all z in D. Then for all z in D, we have 0<=u(z)<=(R/(R-|z-z_0|))^2u(z_0).
1 ... 103|104|105|106|107|108|109 ... 1314 Previous Next

...