TOPICS
Search

Hamiltonian Map


Consider a one-dimensional Hamiltonian map of the form

 H(p,q)=1/2p^2+V(q),
(1)

which satisfies Hamilton's equations

q^.=(partialH)/(partialp)
(2)
p^.=-(partialH)/(partialq).
(3)

Now, write

 q^._i=((q_(i+1)-q_i))/(Deltat),
(4)

where

q_i=q(t)
(5)
q_(i+1)=q(t+Deltat).
(6)

Then the equations of motion become

q_(i+1)=q_i+p_iDeltat
(7)
p_(i+1)=p_i-Deltat((partialV)/(partialq_i))_(q=q_i).
(8)

Note that equations (7) and (8) are not area-preserving, since

(partial(q_(i+1),p_(i+1)))/(partial(q_i,p_i))=|1 -Deltat(partial^2V)/(partialq_i^2); Deltat 1|
(9)
=1+(Deltat)^2(partial^2V)/(partialq_i^2)
(10)
!=1.
(11)

However, if we take instead of (9) and (10),

q_(i+1)=q_i+p_iDeltat
(12)
p_(i+1)=p_i-Deltat((partialV)/(partialq_i))_(q=q_(i+1))
(13)
(partial(q_(i+1),p_(i+1)))/(partial(q_i,p_i))=|1 -Deltatpartial/(partialq_i)((partialV)/(partialq))_(q=q_(i+1)); Deltat 1|
(14)
=1+(Deltat)^2(partial^2V)/(partialq_i^2)=1,
(15)

which is area-preserving.


See also

Area-Preserving Map

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Hamiltonian Map." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HamiltonianMap.html

Subject classifications