TOPICS
Search

Search Results for ""


1001 - 1010 of 13135 for Fractional CalculusSearch Results
The Fourier transform of the Heaviside step function H(x) is given by F_x[H(x)](k) = int_(-infty)^inftye^(-2piikx)H(x)dx (1) = 1/2[delta(k)-i/(pik)], (2) where delta(k) is ...
The Fourier transform of the generalized function 1/x is given by F_x(-PV1/(pix))(k) = -1/piPVint_(-infty)^infty(e^(-2piikx))/xdx (1) = ...
F_x[1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2)](k)=e^(-2piikx_0-Gammapi|k|). This transform arises in the computation of the characteristic function of the Cauchy distribution.
Let R(x) be the ramp function, then the Fourier transform of R(x) is given by F_x[R(x)](k) = int_(-infty)^inftye^(-2piikx)R(x)dx (1) = i/(4pi)delta^'(k)-1/(4pi^2k^2), (2) ...
Let Pi(x) be the rectangle function, then the Fourier transform is F_x[Pi(x)](k)=sinc(pik), where sinc(x) is the sinc function.
F_x[sin(2pik_0x)](k) = int_(-infty)^inftye^(-2piikx)((e^(2piik_0x)-e^(-2piik_0x))/(2i))dx (1) = 1/2iint_(-infty)^infty[-e^(-2pii(k-k_0)x)+e^(-2pii(k+k_0)x)]dx (2) = ...
The French metro metric is an example for disproving apparently intuitive but false properties of metric spaces. The metric consists of a distance function on the plane such ...
rho_(n+1)(x)=intrho_n(y)delta[x-M(y)]dy, where delta(x) is a delta function, M(x) is a map, and rho is the natural invariant.
If f^'(x) is continuous and the integral converges, int_0^infty(f(ax)-f(bx))/xdx=[f(0)-f(infty)]ln(b/a).
A system of linear differential equations (dy)/(dz)=A(z)y, (1) with A(z) an analytic n×n matrix, for which the matrix A(z) is analytic in C^_\{a_1,...,a_N} and has a pole of ...
1 ... 98|99|100|101|102|103|104 ... 1314 Previous Next

...