Search Results for ""
31 - 40 of 2603 for Fourier Series Square WaveSearch Results
The n×n square matrix F_n with entries given by F_(jk)=e^(2piijk/n)=omega^(jk) (1) for j,k=0, 1, 2, ..., n-1, where i is the imaginary number i=sqrt(-1), and normalized by ...
To find the motion of a rectangular membrane with sides of length L_x and L_y (in the absence of gravity), use the two-dimensional wave equation ...
The Fourier cosine transform of a real function is the real part of the full complex Fourier transform, F_x^((c))[f(x)](k) = R[F_x[f(x)](k)] (1) = ...
The Fourier sine transform is the imaginary part of the full complex Fourier transform, F_x^((s))[f(x)](k) = I[F_x[f(x)](k)] (1) = int_(-infty)^inftysin(2pikx)f(x)dx. (2) The ...
The wave equation in oblate spheroidal coordinates is del ^2Phi+k^2Phi=partial/(partialxi_1)[(xi_1^2+1)(partialPhi)/(partialxi_1)] ...
The spherical harmonics form a complete orthogonal system, so an arbitrary real function f(theta,phi) can be expanded in terms of complex spherical harmonics by ...
The wave equation in prolate spheroidal coordinates is del ...
The Fourier transform of the constant function f(x)=1 is given by F_x[1](k) = int_(-infty)^inftye^(-2piikx)dx (1) = delta(k), (2) according to the definition of the delta ...
The Fourier transform of the delta function is given by F_x[delta(x-x_0)](k) = int_(-infty)^inftydelta(x-x_0)e^(-2piikx)dx (1) = e^(-2piikx_0). (2)
Let Pi(x) be the rectangle function, then the Fourier transform is F_x[Pi(x)](k)=sinc(pik), where sinc(x) is the sinc function.
...
View search results from all Wolfram sites (39030 matches)

