TOPICS
Search

Search Results for ""


41 - 50 of 996 for Fast Fourier TransformSearch Results
The discrete Fourier transform of length N (where N is even) can be rewritten as the sum of two discrete Fourier transforms, each of length N/2. One is formed from the ...
The Mellin transform is the integral transform defined by phi(z) = int_0^inftyt^(z-1)f(t)dt (1) f(t) = 1/(2pii)int_(c-iinfty)^(c+iinfty)t^(-z)phi(z)dz. (2) It is implemented ...
The inverse of the Laplace transform F(t) = L^(-1)[f(s)] (1) = 1/(2pii)int_(gamma-iinfty)^(gamma+iinfty)e^(st)f(s)ds (2) f(s) = L[F(t)] (3) = int_0^inftyF(t)e^(-st)dt. (4)
The integral transform obtained by defining omega=-tan(1/2delta), (1) and writing H(omega)=R(omega)+iX(omega), (2) where R(omega) and X(omega) are a Hilbert transform pair as ...
The Radon transform is an integral transform whose inverse is used to reconstruct images from medical CT scans. A technique for using Radon transforms to reconstruct a map of ...
The following integral transform relationship, known as the Abel transform, exists between two functions f(x) and g(t) for 0<alpha<1, f(x) = int_0^x(g(t)dt)/((x-t)^alpha) (1) ...
A one-sided (singly infinite) Z-Transform, Z[{a_n}_(n=0)^infty](z)=sum_(n=0)^infty(a_n)/(z^n). This is the most common variety of Z-transform since it is essentially ...
A one-dimensional transform which makes use of the Haar functions.
The integral transform (Kf)(x)=int_0^inftysqrt(xt)K_nu(xt)f(t)dt, where K_nu(x) is a modified Bessel function of the second kind. Note the lower limit of 0, not -infty as ...
Given a semicircular hump f(x) = sqrt(L^2-(x-L)^2) (1) = sqrt((2L-x)x), (2) the Fourier coefficients are a_0 = 1/2piL (3) a_n = ((-1)^nLJ_1(npi))/n (4) b_n = 0, (5) where ...
1|2|3|4|5|6|7|8 ... 100 Previous Next

...