Search Results for ""
1031 - 1040 of 2860 for Factor/remainder theoremSearch Results
The evolute of the astroid is a hypocycloid evolute for n=4. Surprisingly, it is another astroid scaled by a factor n/(n-2)=4/2=2 and rotated 1/(2·4)=1/8 of a turn. For an ...
The involute of the astroid is a hypocycloid involute for n=4. Surprisingly, it is another astroid scaled by a factor (n-2)/n=2/4=1/2 and rotated 1/(2·4)=1/8 of a turn. For ...
The evolute of a deltoid x = 1/3[2cost-cos(2t)] (1) y = 1/3[2sint-sin(2t)] (2) is a hypocycloid evolute for n=3 x_e = 2cost-cos(2t) (3) y_e = 2sint+sin(2t), (4) which is ...
The involute of the deltoid x = 1/3[2cost-cos(2t)] (1) y = 1/3[2sint-sin(2t)] (2) is a hypocycloid involute for n=3 x_i = 1/9[2cost-cos(2t)] (3) y_i = 1/9[2sint+sin(2t)], (4) ...
For x(0)=a, x = a/(a-2b)[(a-b)cosphi-bcos((a-b)/bphi)] (1) y = a/(a-2b)[(a-b)sinphi+bsin((a-b)/bphi)]. (2) If a/b=n, then x = 1/(n-2)[(n-1)cosphi-cos[(n-1)phi]a (3) y = ...
Mills' theorem states that there exists a real constant A such that |_A^(3^n)_| is prime for all positive integers n (Mills 1947). While for each value of c>=2.106, there are ...
The minimal enclosing circle problem, sometimes also known as the bomb problem, is the problem of finding the circle of smallest radius that contains a given set of points in ...
Partial evaluation is a branch of computer science studying program transformation via specialization. Any function can be specialized by fixing one or more of its inputs to ...
Given a Hilbert space H, a *-subalgebra A of B(H) is said to be a von Neumann algebra in H provided that A is equal to its bicommutant A^('') (Dixmier 1981). Here, B(H) ...
The term "characteristic" has many different uses in mathematics. In general, it refers to some property that inherently describes a given mathematical object, for example ...
...
View search results from all Wolfram sites (11184 matches)

