Search Results for ""
701 - 710 of 1426 for Exponential IntegralSearch Results
![](/common/images/search/spacer.gif)
Let the values of a function f(x) be tabulated at points x_i equally spaced by h=x_(i+1)-x_i, so f_1=f(x_1), f_2=f(x_2), ..., f_n=f(x_n). Then Durand's rule approximating the ...
The eccentric angle of a point on an ellipse with semimajor axes of length a and semiminor axes of length b is the angle t in the parametrization x = acost (1) y = bsint, (2) ...
Let (X,B,mu) be a measure space and let E be a measurable set with mu(E)<infty. Let {f_n} be a sequence of measurable functions on E such that each f_n is finite almost ...
Given a differential operator D on the space of differential forms, an eigenform is a form alpha such that Dalpha=lambdaalpha (1) for some constant lambda. For example, on ...
For an atomic integral domain R (i.e., one in which every nonzero nonunit can be factored as a product of irreducible elements) with I(R) the set of irreducible elements, the ...
delta(r)=sqrt(r)-2alpha(r), where alpha(r) is the elliptic alpha function.
Johnson solid J_(14).
The Elsasser function is defined by the integral E(y,u)=int_(-1/2)^(1/2)exp[-(2piyusinh(2piy))/(cosh(2piy)-cos(2pix))]dx. (1) Special values include E(0,u) = 1 (2) E(y,0) = ...
An endomorphism is called ergodic if it is true that T^(-1)A=A implies m(A)=0 or 1, where T^(-1)A={x in X:T(x) in A}. Examples of ergodic endomorphisms include the map X->2x ...
Define the Euler measure of a polyhedral set as the Euler integral of its indicator function. It is easy to show by induction that the Euler measure of a closed bounded ...
![](/common/images/search/spacer.gif)
...