Search Results for ""
61 - 70 of 1426 for Exponential IntegralSearch Results
![](/common/images/search/spacer.gif)
Denote the nth derivative D^n and the n-fold integral D^(-n). Then D^(-1)f(t)=int_0^tf(xi)dxi. (1) Now, if the equation D^(-n)f(t)=1/((n-1)!)int_0^t(t-xi)^(n-1)f(xi)dxi (2) ...
The Chebyshev integral is given by intx^p(1-x)^qdx=B(x;1+p,1+q), where B(x;a,b) is an incomplete beta function.
Consider two closed oriented space curves f_1:C_1->R^3 and f_2:C_2->R^3, where C_1 and C_2 are distinct circles, f_1 and f_2 are differentiable C^1 functions, and f_1(C_1) ...
A ring that is commutative under multiplication, has a multiplicative identity element, and has no divisors of 0. The integers form an integral domain.
The symbol int used to denote an integral intf(x)dx. The symbol was invented by Leibniz and chosen to be a stylized script "S" to stand for "summation."
The integral int_0^thetae^(-xsecphi)dphi.
The following vector integrals are related to the curl theorem. If F=cxP(x,y,z), (1) then int_CdsxP=int_S(daxdel )xP. (2) If F=cF, (3) then int_CFds=int_Sdaxdel F. (4) The ...
The Stieltjes integral is a generalization of the Riemann integral. Let f(x) and alpha(x) be real-valued bounded functions defined on a closed interval [a,b]. Take a ...
Ahmed's integral is the definite integral int_0^1(tan^(-1)(sqrt(x^2+2)))/(sqrt(x^2+2)(x^2+1))dx=5/(96)pi^2 (OEIS A096615; Ahmed 2002; Borwein et al. 2004, pp. 17-20). This is ...
The Gaussian integral, also called the probability integral and closely related to the erf function, is the integral of the one-dimensional Gaussian function over ...
![](/common/images/search/spacer.gif)
...