Search Results for ""
21 - 30 of 1426 for Exponential IntegralSearch Results
The exponential sum function e_n(x), sometimes also denoted exp_n(x), is defined by e_n(x) = sum_(k=0)^(n)(x^k)/(k!) (1) = (e^xGamma(n+1,x))/(Gamma(n+1)), (2) where ...
An exponential moving average, also known as an exponentially weighted moving average and abbreviated EMA or EWMA, is a moving filter that applied weights to older values in ...
sum_(n=0)^(N-1)e^(inx) = (1-e^(iNx))/(1-e^(ix)) (1) = (-e^(iNx/2)(e^(-iNx/2)-e^(iNx/2)))/(-e^(ix/2)(e^(-ix/2)-e^(ix/2))) (2) = (sin(1/2Nx))/(sin(1/2x))e^(ix(N-1)/2), (3) ...
To fit a functional form y=Ae^(Bx), (1) take the logarithm of both sides lny=lnA+Bx. (2) The best-fit values are then a = ...
The most common form of cosine integral is Ci(x) = -int_x^infty(costdt)/t (1) = gamma+lnx+int_0^x(cost-1)/tdt (2) = 1/2[Ei(ix)+Ei(-ix)] (3) = -1/2[E_1(ix)+E_1(-ix)], (4) ...
The most common "sine integral" is defined as Si(z)=int_0^z(sint)/tdt (1) Si(z) is the function implemented in the Wolfram Language as the function SinIntegral[z]. Si(z) is ...
The logarithmic integral (in the "American" convention; Abramowitz and Stegun 1972; Edwards 2001, p. 26), is defined for real x as li(x) = {int_0^x(dt)/(lnt) for 0<x<1; ...
An integral of the form intf(z)dz, (1) i.e., without upper and lower limits, also called an antiderivative. The first fundamental theorem of calculus allows definite ...
A type of integral which is an extension of both the Riemann integral and the Lebesgue integral. The original Denjoy integral is now called a Denjoy integral "in the ...
An improper integral is a definite integral that has either or both limits infinite or an integrand that approaches infinity at one or more points in the range of ...
...
View search results from all Wolfram sites (57796 matches)

