Search Results for ""
1 - 10 of 1426 for Exponential IntegralSearch Results
![](/common/images/search/spacer.gif)
Let E_1(x) be the En-function with n=1, E_1(x) = int_1^infty(e^(-tx)dt)/t (1) = int_x^infty(e^(-u)du)/u. (2) Then define the exponential integral Ei(x) by E_1(x)=-Ei(-x), (3) ...
The term "integral" can refer to a number of different concepts in mathematics. The most common meaning is the the fundamenetal object of calculus corresponding to summing ...
int_0^inftye^(-omegaT)cos(omegat)domega=T/(t^2+T^2), which can be computed using integration by parts.
Exponential decay is the decrease in a quantity N according to the law N(t)=N_0e^(-lambdat) (1) for a parameter t and constant lambda (known as the decay constant), where e^x ...
Another "beta function" defined in terms of an integral is the "exponential" beta function, given by beta_n(z) = int_(-1)^1t^ne^(-zt)dt (1) = ...
An fairly good numerical integration technique. The method is also available in the Wolfram Language using the option Method -> DoubleExponential to NIntegrate.
The Fourier transform of e^(-k_0|x|) is given by F_x[e^(-k_0|x|)](k)=int_(-infty)^inftye^(-k_0|x|)e^(-2piikx)dx = ...
The elliptic exponential function eexp_(a,b)(u) gives the value of x in the elliptic logarithm eln_(a,b)(x)=1/2int_infty^x(dt)/(sqrt(t^3+at^2+bt)) for a and b real such that ...
Exponential growth is the increase in a quantity N according to the law N(t)=N_0e^(lambdat) (1) for a parameter t and constant lambda (the analog of the decay constant), ...
The power series that defines the exponential map e^x also defines a map between matrices. In particular, exp(A) = e^(A) (1) = sum_(n=0)^(infty)(A^n)/(n!) (2) = ...
![](/common/images/search/spacer.gif)
...