TOPICS
Search

Search Results for ""


361 - 370 of 5395 for Exotic R 4Search Results
The Gallatly circle is the circle with center at the Brocard midpoint X_(39) and radius R_G = Rsinomega (1) = (abc)/(2sqrt(a^2b^2+a^2c^2+b^2c^2)), (2) where R is the ...
The n-dimensional Keller graph, sometimes denoted G_n (e.g., Debroni et al. 2011), can be defined on a vertex set of 4^n elements (m_1,...,m_n) where each m_i is 0, 1, 2, or ...
The keratoid cusp is quintic algebraic curve defined by y^2=x^2y+x^5. (1) It has a ramphoid cusp at the origin, horizontal tangents at (0,0) and (-6/(25),(108)/(3125)), and a ...
A number b_(2n) having generating function sum_(n=0)^(infty)b_(2n)x^(2n) = 1/2ln((e^(x/2)-e^(-x/2))/(1/2x)) (1) = 1/2ln2+1/(48)x^2-1/(5760)x^4+1/(362880)x^6-.... (2) For n=1, ...
The radical circle of the Neuberg circles has circle function l=(a^2b^4-b^4c^2+a^2c^4-b^2c^4)/(bc(a^2b^2+a^2c^2+b^2c^2)), (1) which does not correspond to any Kimberling ...
The nth cubic number n^3 is a sum of n consecutive odd numbers, for example 1^3 = 1 (1) 2^3 = 3+5 (2) 3^3 = 7+9+11 (3) 4^3 = 13+15+17+19, (4) etc. This identity follows from ...
A set of numbers obeying a pattern like the following: 91·37 = 3367 (1) 9901·3367 = 33336667 (2) 999001·333667 = 333333666667 (3) 99990001·33336667 = 3333333366666667 (4) 4^2 ...
The Pell-Lucas polynomials Q(x) are the w-polynomials generated by the Lucas polynomial sequence using the generator p(x)=2x, q(x)=1. The first few are Q_1(x) = 2x (1) Q_2(x) ...
sum_(n=0)^(infty)(-1)^n[((2n-1)!!)/((2n)!!)]^3 = 1-(1/2)^3+((1·3)/(2·4))^3+... (1) = _3F_2(1/2,1/2,1/2; 1,1;-1) (2) = [_2F_1(1/4,1/4; 1;-1)]^2 (3) = ...
For a given monic quartic equation f(x)=x^4+a_3x^3+a_2x^2+a_1x+a_0, (1) the resolvent cubic is the monic cubic polynomial g(x)=x^3+b_2x^2+b_1x+b_0, (2) where the coefficients ...
1 ... 34|35|36|37|38|39|40 ... 540 Previous Next

...