Search Results for ""
611 - 620 of 1360 for Even PrimeSearch Results

In order to find integers x and y such that x^2=y^2 (mod n) (1) (a modified form of Fermat's factorization method), in which case there is a 50% chance that GCD(n,x-y) is a ...
Given a number n, Fermat's factorization methods look for integers x and y such that n=x^2-y^2. Then n=(x-y)(x+y) (1) and n is factored. A modified form of this observation ...
The fundamental theorem of arithmetic states that every positive integer (except the number 1) can be represented in exactly one way apart from rearrangement as a product of ...
Elliptic curve primality proving, abbreviated ECPP, is class of algorithms that provide certificates of primality using sophisticated results from the theory of elliptic ...
A conjecture concerning primes.
A Sierpiński number of the second kind is a number k satisfying Sierpiński's composite number theorem, i.e., a Proth number k such that k·2^n+1 is composite for every n>=1. ...
In Book IX of The Elements, Euclid gave a method for constructing perfect numbers (Dickson 2005, p. 3), although this method applies only to even perfect numbers. In a 1638 ...
Pre-Algebra
A generalization of Fermat's last theorem which states that if a^x+b^y=c^z, where a, b, c, x, y, and z are any positive integers with x,y,z>2, then a, b, and c have a common ...
Given a factor a of a number n=ab, the cofactor of a is b=n/a. A different type of cofactor, sometimes called a cofactor matrix, is a signed version of a minor M_(ij) defined ...

...