TOPICS
Search

Search Results for ""


391 - 400 of 1360 for Even PrimeSearch Results
Chebyshev noticed that the remainder upon dividing the primes by 4 gives 3 more often than 1, as plotted above in the left figure. Similarly, dividing the primes by 3 gives 2 ...
Euler's 6n+1 theorem states that every prime of the form 6n+1, (i.e., 7, 13, 19, 31, 37, 43, 61, 67, ..., which are also the primes of the form 3n+1; OEIS A002476) can be ...
There are a number of functions in various branches of mathematics known as Riemann functions. Examples include the Riemann P-series, Riemann-Siegel functions, Riemann theta ...
The least genus of any Seifert surface for a given knot. The unknot is the only knot with genus 0. Usually, one denotes by g(K) the genus of the knot K. The knot genus has ...
Murata's constant is defined as C_(Murata) = product_(p)[1+1/((p-1)^2)] (1) = 2.82641999... (2) (OEIS A065485), where the product is over the primes p. It can also be written ...
Given binomial coefficient (N; k), write N-k+i=a_ib_i, for 1<=i<=k, where b_i contains only those prime factors >k. Then the number of i for which b_i=1 (i.e., for which all ...
Eisenstein's irreducibility criterion is a sufficient condition assuring that an integer polynomial p(x) is irreducible in the polynomial ring Q[x]. The polynomial ...
Let f(x) be a monic polynomial of degree d with discriminant Delta. Then an odd integer n with (n,f(0)Delta)=1 is called a Frobenius pseudoprime with respect to f(x) if it ...
When P and Q are integers such that D=P^2-4Q!=0, define the Lucas sequence {U_k} by U_k=(a^k-b^k)/(a-b) for k>=0, with a and b the two roots of x^2-Px+Q=0. Then define a ...
A quasiperfect number, called a "slightly excessive number" by Singh (1997), is a "least" abundant number, i.e., one such that sigma(n)=2n+1. Quasiperfect numbers are ...
1 ... 37|38|39|40|41|42|43 ... 136 Previous Next

...