Search Results for ""
361 - 370 of 1360 for Even PrimeSearch Results

The Fermat quotient for a number a and a prime base p is defined as q_p(a)=(a^(p-1)-1)/p. (1) If pab, then q_p(ab) = q_p(a)+q_p(b) (2) q_p(p+/-1) = ∓1 (3) (mod p), where the ...
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
Honaker's problem asks for all consecutive prime number triples (p,q,r) with p<q<r such that p|(qr+1). Caldwell and Cheng (2005) showed that the only Honaker triplets for ...
Legendre's formula counts the number of positive integers less than or equal to a number x which are not divisible by any of the first a primes, (1) where |_x_| is the floor ...
p^x is an infinitary divisor of p^y (with y>0) if p^x|_(y-1)p^y, where d|_kn denotes a k-ary Divisor (Guy 1994, p. 54). Infinitary divisors therefore generalize the concept ...
A primitive polynomial is a polynomial that generates all elements of an extension field from a base field. Primitive polynomials are also irreducible polynomials. For any ...
Given an arithmetic progression of terms an+b, for n=1, 2, ..., the series contains an infinite number of primes if a and b are relatively prime, i.e., (a,b)=1. This result ...
Fermat's 4n+1 theorem, sometimes called Fermat's two-square theorem or simply "Fermat's theorem," states that a prime number p can be represented in an essentially unique ...
The pure equation x^p=C of prime degree p is irreducible over a field when C is a number of the field but not the pth power of an element of the field. Jeffreys and Jeffreys ...
A generalization of Fermat's little theorem. Euler published a proof of the following more general theorem in 1736. Let phi(n) denote the totient function. Then a^(phi(n))=1 ...

...