Search Results for ""
271 - 280 of 2127 for Evaluation of formulas, expressions, and...Search Results

The ordinary differential equation z^2y^('')+zy^'+(z^2-nu^2)y=(4(1/2z)^(nu+1))/(sqrt(pi)Gamma(nu+1/2)), where Gamma(z) is the gamma function (Abramowitz and Stegun 1972, p. ...
(d^2u)/(dz^2)+(du)/(dz)+(k/z+(1/4-m^2)/(z^2))u=0. (1) Let u=e^(-z/2)W_(k,m)(z), where W_(k,m)(z) denotes a Whittaker function. Then (1) becomes ...
(d^2V)/(dv^2)+[a-2qcos(2v)]V=0 (1) (Abramowitz and Stegun 1972; Zwillinger 1997, p. 125), having solution y=C_1C(a,q,v)+C_2S(a,q,v), (2) where C(a,q,v) and S(a,q,v) are ...
There are a number of equations known as the Riccati differential equation. The most common is z^2w^('')+[z^2-n(n+1)]w=0 (1) (Abramowitz and Stegun 1972, p. 445; Zwillinger ...
The distribution function D(x), also called the cumulative distribution function (CDF) or cumulative frequency function, describes the probability that a variate X takes on a ...
A Lambert series is a series of the form F(x)=sum_(n=1)^inftya_n(x^n)/(1-x^n) (1) for |x|<1. Then F(x) = sum_(n=1)^(infty)a_nsum_(m=1)^(infty)x^(mn) (2) = ...
The map projection having transformation equations x = (lambda-lambda_0)cosphi_s (1) y = sinphisecphi_s (2) for the normal aspect, where lambda is the longitude, lambda_0 is ...
There are a great many beautiful identities involving q-series, some of which follow directly by taking the q-analog of standard combinatorial identities, e.g., the ...
If r is an algebraic number of degree n, then the totality of all expressions that can be constructed from r by repeated additions, subtractions, multiplications, and ...
The spherical curve taken by a ship which travels from the south pole to the north pole of a sphere while keeping a fixed (but not right) angle with respect to the meridians. ...

...