Search Results for ""
7131 - 7140 of 13135 for Empirical probabilitySearch Results
The study of an extension of derivatives and integrals to noninteger orders. Fractional calculus is based on the definition of the fractional integral as ...
The maximum possible weight of a fractional clique of a graph G is called the fractional clique number of G, denoted omega^*(G) (Godsil and Royle 2001, pp. 136-137) or ...
The fractional derivative of f(t) of order mu>0 (if it exists) can be defined in terms of the fractional integral D^(-nu)f(t) as D^muf(t)=D^m[D^(-(m-mu))f(t)], (1) where m is ...
A fractional ideal is a generalization of an ideal in a ring R. Instead, a fractional ideal is contained in the number field F, but has the property that there is an element ...
The frame bundle on a Riemannian manifold M is a principal bundle. Over every point p in M, the Riemannian metric determines the set of orthonormal frames, i.e., the possible ...
The Franel numbers are the numbers Fr_n=sum_(k=0)^n(n; k)^3, (1) where (n; k) is a binomial coefficient. The first few values for n=0, 1, ... are 1, 2, 10, 56, 346, ... (OEIS ...
In 1750, Benjamin Franklin constructed the above 8×8 semimagic square having magic constant 260. Any half-row or half-column in this square totals 130, and the four corners ...
The Fransén-Robinson constant F is defined by F=int_0^infty(dx)/(Gamma(x))=2.8077702420... (OEIS A058655) where Gamma(x) is the gamma function. No closed-form expression in ...
A function f is Fréchet differentiable at a if lim_(x->a)(f(x)-f(a))/(x-a) exists. This is equivalent to the statement that phi has a removable discontinuity at a, where ...
A Fréchet space is a complete and metrizable space, sometimes also with the restriction that the space be locally convex. The topology of a Fréchet space is defined by a ...
...
View search results from all Wolfram sites (18500 matches)

