Search Results for ""
301 - 310 of 1485 for Elliptic integralSearch Results
The E_n(x) function is defined by the integral E_n(x)=int_1^infty(e^(-xt)dt)/(t^n) (1) and is given by the Wolfram Language function ExpIntegralE[n, x]. Defining t=eta^(-1) ...
The Hilbert transform (and its inverse) are the integral transform g(y) = H[f(x)]=1/piPVint_(-infty)^infty(f(x)dx)/(x-y) (1) f(x) = ...
As a part of the study of Waring's problem, it is known that every positive integer is a sum of no more than 9 positive cubes (g(3)=9), that every "sufficiently large" ...
A hyperbola (plural "hyperbolas"; Gray 1997, p. 45) is a conic section defined as the locus of all points P in the plane the difference of whose distances r_1=F_1P and ...
Unlike quadratic, cubic, and quartic polynomials, the general quintic cannot be solved algebraically in terms of a finite number of additions, subtractions, multiplications, ...
The integral transform defined by (Kphi)(x)=int_0^infty(x^2-t^2)_+^(lambda/2)P_nu^lambda(t/x)phi(t)dt, where y_+^alpha is the truncated power function and P_nu^lambda(x) is ...
Since the derivative of a constant is zero, any constant may be added to an indefinite integral (i.e., antiderivative) and will still correspond to the same integral. Another ...
Hilbert-Schmidt theory is the study of linear integral equations of the Fredholm type with symmetric integral kernels K(x,t)=K(t,x).
The integral transform (Kf)(x)=int_0^infty((x-t)_+^(c-1))/(Gamma(c))_2F_1(a,b;c;1-t/x)f(t)dt, where Gamma(x) is the gamma function, _2F_1(a,b;c;z) is a hypergeometric ...
The integral transform (Kf)(x)=int_0^inftysqrt(xt)K_nu(xt)f(t)dt, where K_nu(x) is a modified Bessel function of the second kind. Note the lower limit of 0, not -infty as ...
...