TOPICS
Search

Search Results for ""


271 - 280 of 1736 for Elliptic Integralofthe Second KindSearch Results
Given a regular surface M, an asymptotic curve is formally defined as a curve x(t) on M such that the normal curvature is 0 in the direction x^'(t) for all t in the domain of ...
A coordinate system which is similar to bispherical coordinates but having fourth-degree surfaces instead of second-degree surfaces for constant mu. The coordinates are given ...
The hyperbolic cylinder is a quadratic surface given by the equation (x^2)/(a^2)-(y^2)/(b^2)=-1. (1) It is a ruled surface. It can be given parametrically by x = asinhu (2) y ...
Let R[z]>0, 0<=alpha,beta<=1, and Lambda(alpha,beta,z)=sum_(r=0)^infty[lambda((r+alpha)z-ibeta)+lambda((r+1-alpha)z+ibeta)], (1) where lambda(x) = -ln(1-e^(-2pix)) (2) = ...
J_m(x)=(x^m)/(2^(m-1)sqrt(pi)Gamma(m+1/2))int_0^1cos(xt)(1-t^2)^(m-1/2)dt, where J_m(x) is a Bessel function of the first kind and Gamma(z) is the gamma function. Hankel's ...
J_n(z) = 1/(2pi)int_(-pi)^pie^(izcost)e^(in(t-pi/2))dt (1) = (i^(-n))/piint_0^pie^(izcost)cos(nt)dt (2) = 1/piint_0^picos(zsint-nt)dt (3) for n=0, 1, 2, ..., where J_n(z) is ...
Model completion is a term employed when existential closure is successful. The formation of the complex numbers, and the move from affine to projective geometry, are ...
For R[nu]>-1/2, J_nu(z)=(z/2)^nu2/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)cos(zcost)sin^(2nu)tdt, where J_nu(z) is a Bessel function of the first kind, and Gamma(z) is the gamma ...
P(Z)=Z/(sigma^2)exp(-(Z^2+|V|^2)/(2sigma^2))I_0((Z|V|)/(sigma^2)), where I_0(z) is a modified Bessel function of the first kind and Z>0. For a derivation, see Papoulis ...
A k-matrix is a kind of cube root of the identity matrix (distinct from the identity matrix) which is defined by the complex matrix k=[0 0 -i; i 0 0; 0 1 0]. It satisfies ...
1 ... 25|26|27|28|29|30|31 ... 174 Previous Next

...