Search Results for ""
1071 - 1080 of 4827 for Eight Point Circle TheoremSearch Results
Given n mutually exclusive events A_1, ..., A_n whose probabilities sum to unity, then P(B)=P(B|A_1)P(A_1)+...+P(B|A_n)P(A_n), where B is an arbitrary event, and P(B|A_i) is ...
A box can be packed with a harmonic brick a×ab×abc iff the box has dimensions ap×abq×abcr for some natural numbers p, q, r (i.e., the box is a multiple of the brick).
The set of octonions, also sometimes called Cayley numbers and denoted O, consists of the elements in a Cayley algebra. A typical octonion is of the form ...
Let g(x)=(1-x^2)(1-k^2x^2). Then int_0^a(dx)/(sqrt(g(x)))+int_0^b(dx)/(sqrt(g(x)))=int_0^c(dx)/(sqrt(g(x))), where c=(bsqrt(g(a))+asqrt(g(b)))/(sqrt(1-k^2a^2b^2)).
If a polynomial P(x) is divided by (x-r), then the remainder is a constant given by P(r).
Four or more points P_1, P_2, P_3, P_4, ... which lie on a circle C are said to be concyclic. Three points are trivially concyclic since three noncollinear points determine a ...
A singular point a for which f(z)(z-a)^n is not differentiable for any integer n>0.
Every odd integer n is a prime or the sum of three primes. This problem is closely related to Vinogradov's theorem.
product_(k=1)^(n)(1+yq^k) = sum_(m=0)^(n)y^mq^(m(m+1)/2)[n; m]_q (1) = sum_(m=0)^(n)y^mq^(m(m+1)/2)((q)_n)/((q)_m(q)_(n-m)), (2) where [n; m]_q is a q-binomial coefficient.
Any row r and column s of a determinant being selected, if the element common to them be multiplied by its cofactor in the determinant, and every product of another element ...
...
View search results from all Wolfram sites (35522 matches)

