TOPICS
Search

Search Results for ""


171 - 180 of 1453 for Distance FormulaSearch Results
The number of coincidences of a (nu,nu^') correspondence of value gamma on a curve of curve genus p is given by nu+nu^'+2pgamma.
For R[nu]>-1/2, J_nu(z)=(z/2)^nu2/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)cos(zcost)sin^(2nu)tdt, where J_nu(z) is a Bessel function of the first kind, and Gamma(z) is the gamma ...
(1) for p in [-1/2,1/2], where delta is the central difference and S_(2n+1) = 1/2(p+n; 2n+1) (2) S_(2n+2) = p/(2n+2)(p+n; 2n+1), (3) with (n; k) a binomial coefficient.
Let (a)_i and (b)_i be sequences of complex numbers such that b_j!=b_k for j!=k, and let the lower triangular matrices F=(f)_(nk) and G=(g)_(nk) be defined as ...
(1) where H_n(x) is a Hermite polynomial (Watson 1933; Erdélyi 1938; Szegö 1975, p. 380). The generating function ...
det(i+j+mu; 2i-j)_(i,j=0)^(n-1)=2^(-n)product_(k=0)^(n-1)Delta_(2k)(2mu), where mu is an indeterminate, Delta_0(mu)=2, ...
Let pi_n(x)=product_(k=0)^n(x-x_k), (1) then f(x)=f_0+sum_(k=1)^npi_(k-1)(x)[x_0,x_1,...,x_k]+R_n, (2) where [x_1,...] is a divided difference, and the remainder is ...
For R[mu+nu]>1, int_(-pi/2)^(pi/2)cos^(mu+nu-2)thetae^(itheta(mu-nu+2xi))dtheta=(piGamma(mu+nu-1))/(2^(mu+nu-2)Gamma(mu+xi)Gamma(nu-xi)), where Gamma(z) is the gamma function.
Let a spherical triangle Delta have angles A, B, and C. Then the spherical excess is given by Delta=A+B+C-pi.
For x>0, J_0(x) = 2/piint_0^inftysin(xcosht)dt (1) Y_0(x) = -2/piint_0^inftycos(xcosht)dt, (2) where J_0(x) is a zeroth order Bessel function of the first kind and Y_0(x) is ...
1 ... 15|16|17|18|19|20|21 ... 146 Previous Next

...