Search Results for ""
8711 - 8720 of 13135 for Discrete DistributionSearch Results
To solve the heat conduction equation on a two-dimensional disk of radius a=1, try to separate the equation using U(r,theta,t)=R(r)Theta(theta)T(t). (1) Writing the theta and ...
The Heath-Brown-Moroz constant is defined by C_(Heath-Brown-Moroz) = product_(p)(1-1/p)^7(1+(7p+1)/(p^2)) (1) = 0.00131764115... (2) (OEIS A118228), where the product is ...
A family of operators mapping each space M_k of modular forms onto itself. For a fixed integer k and any positive integer n, the Hecke operator T_n is defined on the set M_k ...
The Heine-Borel theorem states that a subspace of R^n (with the usual topology) is compact iff it is closed and bounded. The Heine-Borel theorem can be proved using the ...
In two-dimensional Cartesian coordinates, attempt separation of variables by writing F(x,y)=X(x)Y(y), (1) then the Helmholtz differential equation becomes ...
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
In conical coordinates, Laplace's equation can be written ...
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
The scale factors are h_u=h_v=sqrt(u^2+v^2), h_theta=uv and the separation functions are f_1(u)=u, f_2(v)=v, f_3(theta)=1, given a Stäckel determinant of S=u^2+v^2. The ...
...
View search results from all Wolfram sites (24565 matches)

