Search Results for ""
91 - 100 of 2936 for Diophantine Equation 3rd PowersSearch Results
![](/common/images/search/spacer.gif)
The second-order ordinary differential equation (1-x^2)y^('')-2(mu+1)xy^'+(nu-mu)(nu+mu+1)y=0 (1) sometimes called the hyperspherical differential equation (Iyanaga and ...
The second-order ordinary differential equation (d^2y)/(dx^2)+[theta_0+2sum_(n=1)^inftytheta_ncos(2nx)]y=0, (1) where theta_n are fixed constants. A general solution can be ...
The general nonhomogeneous differential equation is given by x^2(d^2y)/(dx^2)+alphax(dy)/(dx)+betay=S(x), (1) and the homogeneous equation is x^2y^('')+alphaxy^'+betay=0 (2) ...
The partial differential equation 1/(c^2)(partial^2psi)/(partialt^2)=(partial^2psi)/(partialx^2)-mu^2psi (1) that arises in mathematical physics. The quasilinear Klein-Gordon ...
For a measurable function mu, the Beltrami differential equation is given by f_(z^_)=muf_z, where f_z is a partial derivative and z^_ denotes the complex conjugate of z.
The ordinary differential equation (y^')^m=f(x,y) (Hille 1969, p. 675; Zwillinger 1997, p. 120).
The partial differential equation (1-u_t^2)u_(xx)+2u_xu_tu_(xt)-(1+u_x^2)u_(tt)=0.
The second-order ordinary differential equation y^('')+[(alphaeta)/(1+eta)+(betaeta)/((1+eta)^2)+gamma]y=0, where eta=e^(deltax).
The second-order ordinary differential equation (1+x^2)^2y^('')+lambday=0 (Hille 1969, p. 357; Zwillinger 1997, p. 122).
The partial differential equation u_t=u_(xxx)u^3.
![](/common/images/search/spacer.gif)
...