TOPICS
Search

Search Results for ""


21 - 30 of 2936 for Diophantine Equation 3rd PowersSearch Results
The Diophantine equation x^2+k=y^3, which is also an elliptic curve. The general equation is still the focus of ongoing study.
A special case of the quadratic Diophantine equation having the form x^2-Dy^2=1, (1) where D>0 is a nonsquare natural number (Dickson 2005). The equation x^2-Dy^2=+/-4 (2) ...
The Frobenius equation is the Diophantine equation a_1x_1+a_2x_2+...+a_nx_n=b, where the a_i are positive integers, b is an integer, and the solutions x_i are nonnegative ...
There are two kinds of power sums commonly considered. The first is the sum of pth powers of a set of n variables x_k, S_p(x_1,...,x_n)=sum_(k=1)^nx_k^p, (1) and the second ...
The Diophantine equation x^2+y^2+z^2=3xyz. The Markov numbers m are the union of the solutions (x,y,z) to this equation and are related to Lagrange numbers.
The Diophantine equation x^n+y^n=z^n. The assertion that this equation has no nontrivial solutions for n>2 has a long and fascinating history and is known as Fermat's last ...
The Diophantine equation x_1^2+x_2^2+...+x_n^2=ax_1x_2...x_n which has no integer solutions for a>n.
A Thue equation is a Diophantine equation of the form A_nx^n+A_(n-1)x^(n-1)y+A_(n-2)x^(n-2)y^2+...+A_0y^n=M in terms of an irreducible polynomial of degree n>=3 having ...
The Legendre differential equation is the second-order ordinary differential equation (1-x^2)(d^2y)/(dx^2)-2x(dy)/(dx)+l(l+1)y=0, (1) which can be rewritten ...
The Diophantine equation sum_(j=1)^(m-1)j^n=m^n. Erdős conjectured that there is no solution to this equation other than the trivial solution 1^1+2^1=3^1, although this ...
1|2|3|4|5|6 ... 294 Previous Next

...