Search Results for ""
1 - 10 of 3632 for Diophantine Equation 2nd PowersSearch Results
![](/common/images/search/spacer.gif)
A general quadratic Diophantine equation in two variables x and y is given by ax^2+cy^2=k, (1) where a, c, and k are specified (positive or negative) integers and x and y are ...
The 2-1 equation A^n+B^n=C^n (1) is a special case of Fermat's last theorem and so has no solutions for n>=3. Lander et al. (1967) give a table showing the smallest n for ...
The 7.1.2 equation A^7+B^7=C^7 (1) is a special case of Fermat's last theorem with n=7, and so has no solution. No solutions to the 7.1.3, 7.1.4, 7.1.5, 7.1.6 equations are ...
The 6.1.2 equation A^6=B^6+C^6 (1) is a special case of Fermat's last theorem with n=6, and so has no solution. No 6.1.n solutions are known for n<=6 (Lander et al. 1967; Guy ...
The 5.1.2 fifth-order Diophantine equation A^5=B^5+C^5 (1) is a special case of Fermat's last theorem with n=5, and so has no solution. improving on the results on Lander et ...
As a consequence of Matiyasevich's refutation of Hilbert's 10th problem, it can be proved that there does not exist a general algorithm for solving a general quartic ...
As a part of the study of Waring's problem, it is known that every positive integer is a sum of no more than 9 positive cubes (g(3)=9), that every "sufficiently large" ...
The 8.1.2 equation A^8+B^8=C^8 (1) is a special case of Fermat's last theorem with n=8, and so has no solution. No 8.1.3, 8.1.4, 8.1.5, 8.1.6, or 8.1.7 solutions are known. ...
The 9.1.2 equation A^9=B^9+C^9 (1) is a special case of Fermat's last theorem with n=9, and so has no solution. No 9.1.3, 9.1.4, 9.1.5, 9.1.6, 9.1.7, 9.1.8, or 9.1.9 ...
The 10.1.2 equation A^(10)=B^(10)+C^(10) (1) is a special case of Fermat's last theorem with n=10, and so has no solution. No 10.1.n solutions are known with n<13. A 10.1.13 ...
![](/common/images/search/spacer.gif)
...