Search Results for ""
191 - 200 of 1649 for Diophantine EquationSearch Results
![](/common/images/search/spacer.gif)
rho_(n+1)(x)=intrho_n(y)delta[x-M(y)]dy, where delta(x) is a delta function, M(x) is a map, and rho is the natural invariant.
The system of partial differential equations S_t=SxS_(xx).
Let L(x) denote the Rogers L-function defined in terms of the usual dilogarithm by L(x) = 6/(pi^2)[Li_2(x)+1/2lnxln(1-x)] (1) = ...
The second-order ordinary differential equation y^('')+(y^')/x+(1-(nu^2)/(x^2))y=(x-nu)/(pix^2)sin(pinu) whose solutions are Anger functions.
An ordinary differential equation of the form x^my^'=f(x,y), where m is a positive integer, f is analytic at x=y=0, f(0,0)=0, and f_y^'(0,0)!=0. Zwillinger (1997, p. 120), ...
A symmetry of a differential equation is a transformation that keeps its family of solutions invariant. Symmetry analysis can be used to solve some ordinary and partial ...
The ordinary differential equation y^('')-(a+bk^2sn^2x+qk^4sn^4x)y=0, where snx=sn(x,k) is a Jacobi elliptic function (Arscott 1981).
The second-order ordinary differential equation y^('')+2xy^'-2ny=0, (1) whose solutions may be written either y=Aerfc_n(x)+Berfc_n(-x), (2) where erfc_n(x) is the repeated ...
The complex second-order ordinary differential equation x^2y^('')+xy^'-(ix^2+nu^2)y=0 (1) (Abramowitz and Stegun 1972, p. 379; Zwillinger 1997, p. 123), whose solutions can ...
The ordinary differential equation z^2y^('')+zy^'+(z^2-nu^2)y=(4(1/2z)^(nu+1))/(sqrt(pi)Gamma(nu+1/2)), where Gamma(z) is the gamma function (Abramowitz and Stegun 1972, p. ...
![](/common/images/search/spacer.gif)
...