Search Results for ""
8531 - 8540 of 13135 for Cornell EricSearch Results
R(p,tau)=int_(-infty)^inftyint_(-infty)^inftyf(x,y)delta[y-(tau+px)]dydx, (1) where f(x,y)={1 for x,y in [-a,a]; 0 otherwise (2) and ...
Any set of n+2 points in R^n can always be partitioned in two subsets V_1 and V_2 such that the convex hulls of V_1 and V_2 intersect.
Given a straight segment of track of length l, add a small segment Deltal so that the track bows into a circular arc. Find the maximum displacement d of the bowed track. The ...
Let ad=bc, then (1) This can also be expressed by defining (2) (3) Then F_(2m)(a,b,c,d)=a^(2m)f_(2m)(x,y), (4) and identity (1) can then be written ...
Oloa (2010, pers. comm., Jan. 20, 2010) has considered the following integrals containing nested radicals of 1/2 plus terms in theta^2 and ln^2costheta: R_n^- = (1) R_n^+ = ...
The nth Ramanujan prime is the smallest number R_n such that pi(x)-pi(x/2)>=n for all x>=R_n, where pi(x) is the prime counting function. In other words, there are at least n ...
Following Ramanujan (1913-1914), write product_(k=1,3,5,...)^infty(1+e^(-kpisqrt(n)))=2^(1/4)e^(-pisqrt(n)/24)G_n (1) ...
Let phi(n) be any function, say analytic or integrable. Then int_0^inftyx^(s-1)sum_(k=0)^infty(-1)^kx^kphi(k)dx=(piphi(-s))/(sin(spi)) (1) and ...
Suppose that in some neighborhood of x=0, F(x)=sum_(k=0)^infty(phi(k)(-x)^k)/(k!) (1) for some function (say analytic or integrable) phi(k). Then ...
The sum c_q(m)=sum_(h^*(q))e^(2piihm/q), (1) where h runs through the residues relatively prime to q, which is important in the representation of numbers by the sums of ...
...
View search results from all Wolfram sites (19475 matches)

