Search Results for ""
2841 - 2850 of 13135 for Coordinate GeometrySearch Results
cos(pi/(15)) = 1/8(sqrt(30+6sqrt(5))+sqrt(5)-1) (1) cos((2pi)/(15)) = 1/8(sqrt(30-6sqrt(5))+sqrt(5)+1) (2) cos((4pi)/(15)) = 1/8(sqrt(30+6sqrt(5))-sqrt(5)+1) (3) ...
cos(pi/(16)) = 1/2sqrt(2+sqrt(2+sqrt(2))) (1) cos((3pi)/(16)) = 1/2sqrt(2+sqrt(2-sqrt(2))) (2) cos((5pi)/(16)) = 1/2sqrt(2-sqrt(2-sqrt(2))) (3) cos((7pi)/(16)) = ...
The exact values of cos(pi/18) and sin(pi/18) can be given by infinite nested radicals sin(pi/(18))=1/2sqrt(2-sqrt(2+sqrt(2+sqrt(2-...)))), where the sequence of signs +, +, ...
Values of the trigonometric functions can be expressed exactly for integer multiples of pi/20. For cosx, cos(pi/(20)) = 1/4sqrt(8+2sqrt(10+2sqrt(5))) (1) cos((3pi)/(20)) = ...
Trigonometric functions of pi/p for p prime have an especially complicated Galois-minimal representation. In particular, the case cos(pi/23) requires approximately 500 MB of ...
cos(pi/(24)) = 1/2sqrt(2+sqrt(2+sqrt(3))) (1) cos((5pi)/(24)) = 1/2sqrt(2+sqrt(2-sqrt(3))) (2) cos((7pi)/(24)) = 1/2sqrt(2-sqrt(2-sqrt(3))) (3) cos((11pi)/(24)) = ...
Construction of the angle pi/3=60 degrees produces a 30-60-90 triangle, which has angles theta=pi/3 and theta/2=pi/6. From the above diagram, write y=sintheta for the ...
cos(pi/(30)) = 1/4sqrt(7+sqrt(5)+sqrt(6(5+sqrt(5)))) (1) cos((7pi)/(30)) = 1/4sqrt(7-sqrt(5)+sqrt(6(5-sqrt(5)))) (2) cos((11pi)/(30)) = 1/4sqrt(7+sqrt(5)-sqrt(6(5+sqrt(5)))) ...
cos(pi/(32)) = 1/2sqrt(2+sqrt(2+sqrt(2+sqrt(2)))) (1) cos((3pi)/(32)) = 1/2sqrt(2+sqrt(2+sqrt(2-sqrt(2)))) (2) cos((5pi)/(32)) = 1/2sqrt(2+sqrt(2-sqrt(2-sqrt(2)))) (3) ...
Construction of the angle pi/4=45 degrees produces an isosceles right triangle. Since the sides are equal, sin^2theta+cos^2theta=2sin^2theta=1, (1) so solving for ...
...