Search Results for ""
1201 - 1210 of 13135 for Coordinate GeometrySearch Results
The necessary and sufficient condition that an algebraic curve has an algebraic involute is that the arc length is a two-valued algebraic function of the coordinates of the ...
A sextic surface given by the implicit equation 4(x^2+y^2+z^2-13)^3+27(3x^2+y^2-4z^2-12)^2=0.
The evolute of a hyperbola with parametric equations x = acosht (1) y = bsinht (2) is x_e = ((a^2+b^2))/acosh^3t (3) y_e = -((a^2+b^2))/bsinh^3t, (4) which is similar to a ...
A hyperbolic version of the Euclidean cube.
A hyperbolic version of the Euclidean icosahedron.
Taking the pole as the inversion center, the hyperbolic spiral inverts to Archimedes' spiral r=atheta.
The roulette of the pole of a hyperbolic spiral rolling on a straight line is a tractrix.
For x(0)=a, x = a/(a-2b)[(a-b)cosphi-bcos((a-b)/bphi)] (1) y = a/(a-2b)[(a-b)sinphi+bsin((a-b)/bphi)]. (2) If a/b=n, then x = 1/(n-2)[(n-1)cosphi-cos[(n-1)phi]a (3) y = ...
The hypocycloid x = a/(a-2b)[(a-b)cosphi-bcos((a-b)/bphi)] (1) y = a/(a-2b)[(a-b)sinphi+bsin((a-b)/bphi)] (2) has involute x = (a-2b)/a[(a-b)cosphi+bcos((a-b)/bphi)] (3) y = ...
The pedal curve for an n-cusped hypocycloid x = a((n-1)cost+cos[(n-1)t])/n (1) y = a((n-1)sint-sin[(n-1)t])/n (2) with pedal point at the origin is the curve x_p = ...
...