TOPICS
Search

Search Results for ""


10671 - 10680 of 13135 for Coordinate GeometrySearch Results
The q-analog of the binomial theorem (1-z)^n=1-nz+(n(n-1))/(1·2)z^2-(n(n-1)(n-2))/(1·2·3)z^3+... (1) is given by (1-z/(q^n))(1-z/(q^(n-1)))...(1-z/q) ...
q-calculus or quantum calculus is a methodology comparable to the usual study of calculus but which is centered on the idea of deriving q-analogous results without the use of ...
A q-analog of the Chu-Vandermonde identity given by where _2phi_1(a,b;c;q,z) is the q-hypergeometric function. The identity can also be written as ...
There are several q-analogs of the cosine function. The two natural definitions of the q-cosine defined by Koekoek and Swarttouw (1998) are given by cos_q(z) = ...
D_q=1/(1-q)lim_(epsilon->0)(lnI(q,epsilon))/(ln(1/epsilon),) (1) where I(q,epsilon)=sum_(i=1)^Nmu_i^q, (2) epsilon is the box size, and mu_i is the natural measure. The ...
Given a real number q>1, the series x=sum_(n=0)^inftya_nq^(-n) is called the q-expansion, or beta-expansion (Parry 1957), of the positive real number x if, for all n>=0, ...
The exponential function has two different natural q-extensions, denoted e_q(z) and E_q(z). They are defined by e_q(z) = sum_(n=0)^(infty)(z^n)/((q;q)_n) (1) = _1phi_0[0; ...
The q-analog of the factorial (by analogy with the q-gamma function). For k an integer, the q-factorial is defined by [k]_q! = faq(k,q) (1) = ...
A q-analog of the gamma function defined by Gamma_q(x)=((q;q)_infty)/((q^x;q)_infty)(1-q)^(1-x), (1) where (x,q)_infty is a q-Pochhammer symbol (Koepf 1998, p. 26; Koekoek ...
A q-analog of Gauss's theorem due to Jacobi and Heine, _2phi_1(a,b;c;q,c/(ab))=((c/a;q)_infty(c/b;q)_infty)/((c;q)_infty(c/(ab);q)_infty) (1) for |c/(ab)|<1 (Gordon and ...

...