TOPICS
Search

Search Results for ""


281 - 290 of 4569 for Complex numbersSearch Results
The l^2-norm (also written "l^2-norm") |x| is a vector norm defined for a complex vector x=[x_1; x_2; |; x_n] (1) by |x|=sqrt(sum_(k=1)^n|x_k|^2), (2) where |x_k| on the ...
An antilinear operator A^~ satisfies the following two properties: A^~[f_1(x)+f_2(x)] = A^~f_1(x)+A^~f_2(x) (1) A^~cf(x) = c^_A^~f(x), (2) where c^_ is the complex conjugate ...
For a measurable function mu, the Beltrami differential equation is given by f_(z^_)=muf_z, where f_z is a partial derivative and z^_ denotes the complex conjugate of z.
The convolution of two complex-valued functions on a group G is defined as (a*b)(g)=sum_(k in G)a(k)b(k^(-1)g) where the support (set which is not zero) of each function is ...
Let |A| be an n×n determinant with complex (or real) elements a_(ij), then |A|!=0 if |a_(ii)|>sum_(j=1; j!=i)^n|a_(ij)|.
A theorem proved by É. Cartan in 1913 which classifies the irreducible representations of complex semisimple Lie algebras.
Let K be a finite complex, and let phi:C_p(K)->C_p(K) be a chain map, then sum_(p)(-1)^pTr(phi,C_p(K))=sum_(p)(-1)^pTr(phi_*,H_p(K)/T_p(K)).
A line bundle is a special case of a vector bundle in which the fiber is either R, in the case of a real line bundle, or C, in the case of a complex line bundle.
A regular surface M subset R^n is called orientable if each tangent space M_p has a complex structure J_p:M_p->M_p such that p->J_p is a continuous function.
A matrix A for which A^(H)=A^(T)^_=A, where the conjugate transpose is denoted A^(H), A^(T) is the transpose, and z^_ is the complex conjugate. If a matrix is self-adjoint, ...
1 ... 26|27|28|29|30|31|32 ... 457 Previous Next

...