Search Results for ""
91 - 100 of 726 for Combinations of operations on fractionsSearch Results
Liouville's constant, sometimes also called Liouville's number, is the real number defined by L=sum_(n=1)^infty10^(-n!)=0.110001000000000000000001... (OEIS A012245). ...
Let x=[a_0;a_1,...]=a_0+1/(a_1+1/(a_2+1/(a_3+...))) (1) be the simple continued fraction of a "generic" real number x, where the numbers a_i are the partial denominator. ...
The fraction eta of a volume filled by a given collection of solids.
An irrational number is a number that cannot be expressed as a fraction p/q for any integers p and q. Irrational numbers have decimal expansions that neither terminate nor ...
Every irrational number x has an approximation constant c(x) defined by c(x)=lim inf_(q->infty)q|qx-p|, where p=nint(qx) is the nearest integer to qx and lim inf is the ...
The number 2^(1/3)=RadicalBox[2, 3] (the cube root of 2) which is to be constructed in the cube duplication problem. This number is not a Euclidean number although it is an ...
Let [a_0;a_1,a_2,...] be the simple continued fraction of a "generic" real number, where the numbers a_i are the partial quotients. Then the Khinchin (or Khintchine) harmonic ...
The silver ratio is the quantity defined by the continued fraction delta_S = [2,2,2,...] (1) = 2+1/(2+1/(2+1/(2+...))) (2) (Wall 1948, p. 24). It follows that ...
A set of real numbers x_1, ..., x_n is said to possess an integer relation if there exist integers a_i such that a_1x_1+a_2x_2+...+a_nx_n=0, with not all a_i=0. For ...
Given a number n, Fermat's factorization methods look for integers x and y such that n=x^2-y^2. Then n=(x-y)(x+y) (1) and n is factored. A modified form of this observation ...
...
View search results from all Wolfram sites (217144 matches)

