TOPICS
Search

Search Results for ""


281 - 290 of 2241 for Clairauts Differential EquationSearch Results
The Diophantine equation sum_(j=1)^(m-1)j^n=m^n. Erdős conjectured that there is no solution to this equation other than the trivial solution 1^1+2^1=3^1, although this ...
In 1913, Ramanujan asked if the Diophantine equation of second order 2^n-7=x^2, sometimes called the Ramanujan-Nagell equation, has any solutions other than n=3, 4, 5, 7, and ...
The equation f(x_n|x_s)=int_(-infty)^inftyf(x_n|x_r)f(x_r|x_s)dx_r which gives the transitional densities of a Markov sequence. Here, n>r>s are any integers (Papoulis 1984, ...
A congruence of the form ax^2+bx+c=0 (mod m), (1) where a, b, and c are integers. A general quadratic congruence can be reduced to the congruence x^2=q (mod p) (2) and can be ...
A linear recurrence equation is a recurrence equation on a sequence of numbers {x_n} expressing x_n as a first-degree polynomial in x_k with k<n. For example ...
An equation proposed by Lambert (1758) and studied by Euler in 1779. x^alpha-x^beta=(alpha-beta)vx^(alpha+beta). (1) When alpha->beta, the equation becomes lnx=vx^beta, (2) ...
rho_(n+1)(x)=intrho_n(y)delta[x-M(y)]dy, where delta(x) is a delta function, M(x) is a map, and rho is the natural invariant.
Let L(x) denote the Rogers L-function defined in terms of the usual dilogarithm by L(x) = 6/(pi^2)[Li_2(x)+1/2lnxln(1-x)] (1) = ...
A generalization of the equation whose solution is desired in Fermat's last theorem x^n+y^n=z^n to x^n+y^n=cz^n for x, y, z, and c positive constants, with trivial solutions ...
A general quadratic Diophantine equation in two variables x and y is given by ax^2+cy^2=k, (1) where a, c, and k are specified (positive or negative) integers and x and y are ...
1 ... 26|27|28|29|30|31|32 ... 225 Previous Next

...