Search Results for ""
101 - 110 of 2241 for Clairauts Differential EquationSearch Results
An inhomogeneous linear ordinary differential equation with constant coefficients is an ordinary differential equation in which coefficients are constants (i.e., not ...
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
A homogeneous linear ordinary differential equation with constant coefficients is an ordinary differential equation in which coefficients are constants (i.e., not functions), ...
If one solution (y_1) to a second-order ordinary differential equation y^('')+P(x)y^'+Q(x)y=0 (1) is known, the other (y_2) may be found using the so-called reduction of ...
In parabolic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(u^2+v^2), h_z=1 and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving Stäckel determinant ...
In cylindrical coordinates, the scale factors are h_r=1, h_theta=r, h_z=1, so the Laplacian is given by del ...
To solve the system of differential equations (dx)/(dt)=Ax(t)+p(t), (1) where A is a matrix and x and p are vectors, first consider the homogeneous case with p=0. The ...
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in prolate spheroidal coordinates.
...
View search results from all Wolfram sites (30924 matches)

