TOPICS
Search

Search Results for ""


131 - 140 of 1277 for Chebyshev PolynomialSearch Results
The power polynomials x^n are an associated Sheffer sequence with f(t)=t, (1) giving generating function sum_(k=0)^inftyx^kt^k=1/(1-tx) (2) and exponential generating ...
A polynomial with coefficients in a field is separable if its factors have distinct roots in some extension field.
The distance polynomial is the characteristic polynomial of the graph distance matrix. The following table summarizes distance polynomials for some common classes of graphs. ...
The Euler polynomial E_n(x) is given by the Appell sequence with g(t)=1/2(e^t+1), (1) giving the generating function (2e^(xt))/(e^t+1)=sum_(n=0)^inftyE_n(x)(t^n)/(n!). (2) ...
The polynomials a_n^((beta))(x) given by the Sheffer sequence with g(t) = (1-t)^(-beta) (1) f(t) = ln(1-t), (2) giving generating function ...
Polynomials O_n(x) that can be defined by the sum O_n(x)=1/4sum_(k=0)^(|_n/2_|)(n(n-k-1)!)/(k!)(1/2x)^(2k-n-1) (1) for n>=1, where |_x_| is the floor function. They obey the ...
Polynomials s_k(x;lambda,mu) which are a generalization of the Boole polynomials, form the Sheffer sequence for g(t) = (1+e^(lambdat))^mu (1) f(t) = e^t-1 (2) and have ...
Polynomials P_k(x) which form the Sheffer sequence for g(t) = (2t)/(e^t-1) (1) f(t) = (e^t-1)/(e^t+1) (2) and have generating function ...
A polynomial given by Phi_n(x)=product_(k=1)^n^'(x-zeta_k), (1) where zeta_k are the roots of unity in C given by zeta_k=e^(2piik/n) (2) and k runs over integers relatively ...
Let Delta denote an integral convex polytope of dimension n in a lattice M, and let l_Delta(k) denote the number of lattice points in Delta dilated by a factor of the integer ...
1 ... 11|12|13|14|15|16|17 ... 128 Previous Next

...