Search Results for ""
11 - 20 of 1277 for Chebyshev PolynomialSearch Results
![](/common/images/search/spacer.gif)
Chebyshev noticed that the remainder upon dividing the primes by 4 gives 3 more often than 1, as plotted above in the left figure. Similarly, dividing the primes by 3 gives 2 ...
In 1891, Chebyshev and Sylvester showed that for sufficiently large x, there exists at least one prime number p satisfying x<p<(1+alpha)x, where alpha=0.092.... Since the ...
The two functions theta(x) and psi(x) defined below are known as the Chebyshev functions. The function theta(x) is defined by theta(x) = sum_(k=1)^(pi(x))lnp_k (1) = ...
The approximating polynomial which has the smallest maximum deviation from the true function. It is closely approximated by the Chebyshev polynomials of the first kind.
Let a>|b|, and write h(theta)=(acostheta+b)/(2sintheta). (1) Then define P_n(x;a,b) by the generating function f(x,w)=f(costheta,w)=sum_(n=0)^inftyP_n(x;a,b)w^n ...
max_(a<=x<=b){|f(x)-rho(x)|w(x)}.
A Gaussian quadrature-like formula for numerical estimation of integrals. It uses weighting function W(x)=1 in the interval [-1,1] and forces all the weights to be equal. The ...
Apply Markov's inequality with a=k^2 to obtain P[(x-mu)^2>=k^2]<=(<(x-mu)^2>)/(k^2)=(sigma^2)/(k^2). (1) Therefore, if a random variable x has a finite mean mu and finite ...
The constants lambda_(m,n)=inf_(r in R_(m,n))sup_(x>=0)|e^(-x)-r(x)|, where r(x)=(p(x))/(q(x)), p and q are mth and nth order polynomials, and R_(m,n) is the set of all ...
If a_1>=a_2>=...>=a_n (1) b_1>=b_2>=...>=b_n, (2) then nsum_(k=1)^na_kb_k>=(sum_(k=1)^na_k)(sum_(k=1)^nb_k). (3) This is true for any distribution.
![](/common/images/search/spacer.gif)
...