Search Results for ""
101 - 110 of 1277 for Chebyshev PolynomialSearch Results
![](/common/images/search/spacer.gif)
The difference between the highest and lowest degrees of a polynomial.
A symmetric polynomial on n variables x_1, ..., x_n (also called a totally symmetric polynomial) is a function that is unchanged by any permutation of its variables. In other ...
Special functions which arise as solutions to second order ordinary differential equations are commonly said to be "of the first kind" if they are nonsingular at the origin, ...
The chromatic polynomial pi_G(z) of an undirected graph G, also denoted C(G;z) (Biggs 1973, p. 106) and P(G,x) (Godsil and Royle 2001, p. 358), is a polynomial which encodes ...
A polynomial is said to be irreducible if it cannot be factored into nontrivial polynomials over the same field. For example, in the field of rational polynomials Q[x] (i.e., ...
The orthogonal polynomials defined by h_n^((alpha,beta))(x,N)=((-1)^n(N-x-n)_n(beta+x+1)_n)/(n!) ×_3F_2(-n,-x,alpha+N-x; N-x-n,-beta-x-n;1) =((-1)^n(N-n)_n(beta+1)_n)/(n!) ...
The Jacobsthal polynomials are the W-polynomial obtained by setting p(x)=1 and q(x)=2x in the Lucas polynomial sequence. The first few Jacobsthal polynomials are J_1(x) = 1 ...
Let alpha(x) be a step function with the jump j(x)=(N; x)p^xq^(N-x) (1) at x=0, 1, ..., N, where p>0,q>0, and p+q=1. Then the Krawtchouk polynomial is defined by ...
The Laplacian polynomial is the characteristic polynomial of the Laplacian matrix. The second smallest root of the Laplacian polynomial of a graph g (counting multiple values ...
The Pell polynomials P(x) are the W-polynomials generated by the Lucas polynomial sequence using the generator p(x)=2x, q(x)=1. This gives recursive equations for P(x) from ...
![](/common/images/search/spacer.gif)
...