Search Results for ""
1441 - 1450 of 1812 for Cayley graphsSearch Results

The second-order ordinary differential equation xy^('')+(c-x)y^'-ay=0, sometimes also called Kummer's differential equation (Slater 1960, p. 2; Zwillinger 1997, p. 124). It ...
A statistical distribution for which the variables may take on a continuous range of values. Abramowitz and Stegun (1972, p. 930) give a table of the parameters of most ...
y approx m+sigmaw, (1) where w = (2) where h_1(x) = 1/6He_2(x) (3) h_2(x) = 1/(24)He_3(x) (4) h_(11)(x) = -1/(36)[2He_3(x)+He_1(x)] (5) h_3(x) = 1/(120)He_4(x) (6) h_(12)(x) ...
The coversine is a little-used entire trigonometric function defined by covers(z) = versin(1/2pi-z) (1) = 1-sinz, (2) where versin(z) is the versine and sinz is the sine. The ...
Let M(h) be the moment-generating function, then the cumulant generating function is given by K(h) = lnM(h) (1) = kappa_1h+1/(2!)h^2kappa_2+1/(3!)h^3kappa_3+..., (2) where ...
Let phi(t) be the characteristic function, defined as the Fourier transform of the probability density function P(x) using Fourier transform parameters a=b=1, phi(t) = ...
The Cunningham function, sometimes also called the Pearson-Cunningham function, can be expressed using Whittaker functions (Whittaker and Watson 1990, p. 353). ...
The first Debye function is defined by D_n^((1))(x) = int_0^x(t^ndt)/(e^t-1) (1) = x^n[1/n-x/(2(n+1))+sum_(k=1)^(infty)(B_(2k)x^(2k))/((2k+n)(2k!))], (2) for |x|<2pi, n>=1, ...
Given any assignment of n-element sets to the n^2 locations of a square n×n array, is it always possible to find a partial Latin square? The fact that such a partial Latin ...
The Dirichlet lambda function lambda(x) is the Dirichlet L-series defined by lambda(x) = sum_(n=0)^(infty)1/((2n+1)^x) (1) = (1-2^(-x))zeta(x), (2) where zeta(x) is the ...

...