Search Results for ""
891 - 900 of 1440 for Catalans ConstantSearch Results
An identity in calculus of variations discovered in 1868 by Beltrami. The Euler-Lagrange differential equation is (partialf)/(partialy)-d/(dx)((partialf)/(partialy_x))=0. (1) ...
(dy)/(dx)+p(x)y=q(x)y^n. (1) Let v=y^(1-n) for n!=1. Then (dv)/(dx)=(1-n)y^(-n)(dy)/(dx). (2) Rewriting (1) gives y^(-n)(dy)/(dx) = q(x)-p(x)y^(1-n) (3) = q(x)-vp(x). (4) ...
The base 2 method of counting in which only the digits 0 and 1 are used. In this base, the number 1011 equals 1·2^0+1·2^1+0·2^2+1·2^3=11. This base is used in computers, ...
A searching algorithm which works on a sorted table by testing the middle of an interval, eliminating the half of the table in which the key cannot lie, and then repeating ...
A function f(x) is said to have bounded variation if, over the closed interval x in [a,b], there exists an M such that |f(x_1)-f(a)|+|f(x_2)-f(x_1)|+... +|f(b)-f(x_(n-1))|<=M ...
A Brier number is a number that is both a Riesel number and a Sierpiński number of the second kind, i.e., a number n such that for all k>=1, the numbers n·2^k+1 and n·2^k-1 ...
A Tschirnhausen transformation can be used to take a general quintic equation to the form x^5-x-a=0, where a may be complex.
Let X and Y be CW-complexes, and let f:X->Y be a continuous map. Then the cellular approximation theorem states that any such f is homotopic to a cellular map. In fact, if ...
A centered triangular number is a centered polygonal number consisting of a central dot with three dots around it, and then additional dots in the gaps between adjacent dots. ...
A number of spellings of "Chebyshev" (which is the spelling used exclusively in this work) are commonly found in the literature. These include Tchebicheff, Čebyšev, ...
...
View search results from all Wolfram sites (10126 matches)

