Search Results for ""
1101 - 1110 of 2395 for Burnside's theoremSearch Results
The 2-1 equation A^n+B^n=C^n (1) is a special case of Fermat's last theorem and so has no solutions for n>=3. Lander et al. (1967) give a table showing the smallest n for ...
The 10.1.2 equation A^(10)=B^(10)+C^(10) (1) is a special case of Fermat's last theorem with n=10, and so has no solution. No 10.1.n solutions are known with n<13. A 10.1.13 ...
The 7.1.2 equation A^7+B^7=C^7 (1) is a special case of Fermat's last theorem with n=7, and so has no solution. No solutions to the 7.1.3, 7.1.4, 7.1.5, 7.1.6 equations are ...
The 5.1.2 fifth-order Diophantine equation A^5=B^5+C^5 (1) is a special case of Fermat's last theorem with n=5, and so has no solution. improving on the results on Lander et ...
A hyperelliptic curve is an algebraic curve given by an equation of the form y^2=f(x), where f(x) is a polynomial of degree n>4 with n distinct roots. If f(x) is a cubic or ...
When a prime l divides the elliptic discriminant of a elliptic curve E, two or all three roots of E become congruent (mod l). An elliptic curve is semistable if, for all such ...
The 9.1.2 equation A^9=B^9+C^9 (1) is a special case of Fermat's last theorem with n=9, and so has no solution. No 9.1.3, 9.1.4, 9.1.5, 9.1.6, 9.1.7, 9.1.8, or 9.1.9 ...
The Weierstrass elliptic functions (or Weierstrass P-functions, voiced "p-functions") are elliptic functions which, unlike the Jacobi elliptic functions, have a second-order ...
The 6.1.2 equation A^6=B^6+C^6 (1) is a special case of Fermat's last theorem with n=6, and so has no solution. No 6.1.n solutions are known for n<=6 (Lander et al. 1967; Guy ...
The Fields Medals are commonly regarded as mathematics' closest analog to the Nobel Prize (which does not exist in mathematics), and are awarded every four years by the ...
...
View search results from all Wolfram sites (5757 matches)

