Search Results for ""
2811 - 2820 of 13135 for Book GraphSearch Results
For every k>=1, let C_k be the set of composite numbers n>k such that if 1<a<n, GCD(a,n)=1 (where GCD is the greatest common divisor), then a^(n-k)=1 (mod n). Special cases ...
Let R^3 be the space in which a knot K sits. Then the space "around" the knot, i.e., everything but the knot itself, is denoted R^3-K and is called the knot complement of K ...
The numbers defined by the recurrence relation K_(n+1)=1+min(2K_(|_n/2_|),3K_(|_n/3_|)), with K_0=1. The first few values for n=0, 1, 2, ... are 1, 3, 3, 4, 7, 7, 7, 9, 9, ...
Knuth's up-arrow notation is a notation invented by Knuth (1976) to represent large numbers in which evaluation proceeds from the right (Conway and Guy 1996, p. 60): m^n ...
A Lehmer number is a number generated by a generalization of a Lucas sequence. Let alpha and beta be complex numbers with alpha+beta = sqrt(R) (1) alphabeta = Q, (2) where Q ...
Linnik's constant L is the constant appearing in Linnik's theorem. Heath-Brown (1992) has shown that L<=5.5, and Schinzel, Sierpiński, and Kanold (Ribenboim 1989) have ...
The unique magic square of order three. The Lo Shu is an associative magic square, but not a panmagic square.
The problem of finding the strategy to guarantee reaching the boundary of a given region ("forest") in the shortest distance (i.e., a strategy having the best worst-case ...
When P and Q are integers such that D=P^2-4Q!=0, define the Lucas sequence {U_k} by U_k=(a^k-b^k)/(a-b) for k>=0, with a and b the two roots of x^2-Px+Q=0. Then define a ...
The unknotting number for a torus knot (p,q) is (p-1)(q-1)/2. This 40-year-old conjecture was proved (Adams 1994) by Kronheimer and Mrowka (1993, 1995).
...
View search results from all Wolfram sites (172886 matches)

