TOPICS
Search

Search Results for ""


741 - 750 of 3359 for Bessel FunctionSearch Results
Given a Poisson distribution with a rate of change lambda, the distribution function D(x) giving the waiting times until the hth Poisson event is D(x) = ...
The nontrivial zeros of the Riemann zeta function correspond to the eigenvalues of some Hermitian operator (Derbyshire 2004, pp. 277-278).
Polynomials M_k(x) which form the associated Sheffer sequence for f(t)=(e^t-1)/(e^t+1) (1) and have the generating function sum_(k=0)^infty(M_k(x))/(k!)t^k=((1+t)/(1-t))^x. ...
The theta series of a lattice is the generating function for the number of vectors with norm n in the lattice. Theta series for a number of lattices are implemented in the ...
The complex second-order ordinary differential equation x^2y^('')+xy^'-(ix^2+nu^2)y=0 (1) (Abramowitz and Stegun 1972, p. 379; Zwillinger 1997, p. 123), whose solutions can ...
A class of formal series expansions in derivatives of a distribution Psi(t) which may (but need not) be the normal distribution function Phi(t)=1/(sqrt(2pi))e^(-t^2/2) (1) ...
A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x=a is given by (1) ...
Every nonconstant entire function attains every complex value with at most one exception (Henrici 1988, p. 216; Apostol 1997). Furthermore, every analytic function assumes ...
A method for computing the prime counting function. Define the function T_k(x,a)=(-1)^(beta_0+beta_1+...+beta_(a-1))|_x/(p_1^(beta_0)p_2^(beta_1)...p_a^(beta_(a-1)))_|, (1) ...
The sawtooth wave, called the "castle rim function" by Trott (2004, p. 228), is the periodic function given by S(x)=Afrac(x/T+phi), (1) where frac(x) is the fractional part ...
1 ... 72|73|74|75|76|77|78 ... 336 Previous Next

...