Search Results for ""
1 - 10 of 3359 for Bessel FunctionSearch Results

A Bessel function Z_n(x) is a function defined by the recurrence relations Z_(n+1)+Z_(n-1)=(2n)/xZ_n (1) and Z_(n+1)-Z_(n-1)=-2(dZ_n)/(dx). (2) The Bessel functions are more ...
A solution to the spherical Bessel differential equation. The two types of solutions are denoted j_n(x) (spherical Bessel function of the first kind) or n_n(x) (spherical ...
A function I_n(x) which is one of the solutions to the modified Bessel differential equation and is closely related to the Bessel function of the first kind J_n(x). The above ...
The modified bessel function of the second kind is the function K_n(x) which is one of the solutions to the modified Bessel differential equation. The modified Bessel ...
For x>0, J_0(x) = 2/piint_0^inftysin(xcosht)dt (1) Y_0(x) = -2/piint_0^inftycos(xcosht)dt, (2) where J_0(x) is a zeroth order Bessel function of the first kind and Y_0(x) is ...
The spherical Bessel function of the second kind, denoted y_nu(z) or n_nu(z), is defined by y_nu(z)=sqrt(pi/(2z))Y_(nu+1/2)(z), (1) where Y_nu(z) is a Bessel function of the ...
A Bessel function of the second kind Y_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 703, eqn. 6.649.1), sometimes also denoted N_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 657, ...
A modified spherical Bessel function of the first kind (Abramowitz and Stegun 1972), also called a "spherical modified Bessel function of the first kind" (Arfken 1985), is ...
For R[nu]>-1/2, J_nu(z)=(z/2)^nu2/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)cos(zcost)sin^(2nu)tdt, where J_nu(z) is a Bessel function of the first kind, and Gamma(z) is the gamma ...
When the index nu is real, the functions J_nu(z), J_nu^'(z), Y_nu(z), and Y_nu^'(z) each have an infinite number of real zeros, all of which are simple with the possible ...

...